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Abstract. The semiclassical formula for matrix elements, sometimes called the Heisenberg
correspondence principle, relates matrix elements (operators in energy representation) to phase
space functions (Weyl representatives). The formula does not make sense for arbitrary operators;
when it is valid it implicitly fixes the relative phases of the eigenfunctions of the Hamiltonian.
The conventions, which have to be used for the wavefunctions in position or momentum
representation, are given here in explicit form, and we present a class of operators related
to coherent states of high energy for which the Heisenberg correspondence principle holds.

1. Introduction

In the preceding paper (henceforth referred to as paper I) a scheme was presented which
allows one to calculate time-dependent quantum mechanical expectation values by methods
borrowed from classical mechanics (action and angle variables, Hamiltonian flow). Two
independent approximations were employed. In the first, the quantum frequencies associated
with matrix elements in the energy representation are replaced by quantities derived from
a classical Hamiltonian. This approximation is unavoidable if one wants to reformulate
quantum dynamics in a form where the Hamiltonian flow of classical mechanics is still
visible on a set of selected classical orbits. In the second approximation, the matrix elements
of the density operator and/or the observable are related to classical phase space functions
(more precisely, to the Weyl representatives of these operators). Such a relation is needed to
obtain the matrices of these operators in energy representation without having to calculate
the eigenfunctions of the Hamiltonian first; this matrix representation is of interest because
it is the one where the time dependence of the density operator assumes its simplest form.

In both approximations the validity of the semiclassical formula for matrix elements is
taken for granted. In the notation of paper I this formula reads as follows

〈n′|F̂ |n′′〉 ≈ Fδn(n̄+h̄)
δn = n′ − n′′ n̄+ = 1

2(n
′ + n′′ + 1). (1)

Here F̂ is the operator in question,| n 〉 is a normalized eigenstate of the Hamiltonian, and

F(I,Θ) =
∑
M

FM(I) eiMΘ (2)
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is the Fourier series of the Weyl representative of the operatorF̂ , where action and angle
coordinates are chosen as variables instead of the usual position and momentum coordinates
(see section 2 of paper I).

Formula (1) seems to be so well known that it is difficult to trace its first appearance.
A detailed derivation was given recently in [1]; for special cases see [2] and the references
in [1]. There are two facts related to the application of this formula which must have been
known to people using it in specific problems, but were ignored, or at most mentioned, in
passing in general discussions. The first is that the formula does not make sense for arbitrary
operators. In [1] it is stated that the ‘matrix elements are slow functions of the average
of the quantum numbers and are sensitive functions of the difference’ (see also [3] for a
similar statement). However, the slow variation of〈n′|F̂ |n′′〉 in n̄ is not a general feature
which is always met but a condition imposed on the admissible operatorsF̂ (these operators
were called ‘semiclassical’ in paper I). It seems to have the status of a necessary condition
since it is not satisfied for the two operators presented in section 4 of paper I as examples
where the semiclassical matrix elements differ substantially from the true ones. The second
peculiarity of (1) is that this formula implicitly fixes the relative phases of the eigenstates
|n〉, once the function2(P,X) is completely defined. This definition involves a convention
on the curve2(P,X) = 0, whereas the functionI (P,X) is uniquely determined by the
Hamiltonian. When both functionsI (P,X) and2(P,X) are given, the inverse functions
P(I,Θ),X(I,Θ) are uniquely determined and so is the right-hand side of (1), because the
Weyl representativeF(P,X) is uniquely related to the operator̂F . Accordingly, for the
left-hand side of (1) to coincide with the right-hand side (up to small errors), the phases of
the eigenstates have to be properly chosen. However, it is not obvious from (1) what this
phase convention implies forψn(x) = 〈x|n〉 or ψ̃n(p) = 〈p|n〉, the eigenfunctions of the
Hamiltonian in thex- and thep-representation, respectively.

The observed limitations of equation (1) and the inherent phase convention therefore
raise two questions. (i) What are the necessary and sufficient conditions, which characterize
the set of semiclassical operators? (ii) What is the explicit form of the phase convention
used in (1) and the consistent convention used in the definition of the function2(P,X)?
The second question has been briefly discussed by Morehead [1] but the answer he gives
is incomplete (see the discussion at the end of section 2).

In section 2 a partial answer to (i) is given by showing that all operators of the form
|I,Θ 〉〈 I′,Θ′| with I ≈ I′ � h̄ andΘ ≈ Θ′ are semiclassical, if the Hamiltonian meets cer-
tain requirements and the considered energy is sufficiently high. We hope that this result will
stimulate further investigations which finally result in a complete answer. As a by-product
of this investigation a number of new semiclassical approximations were obtained for scalar
products of wavefunctions (coherent states, energy eigenfunctions) and phase space repre-
sentatives of operators (W - andQ-functions). In addition it was possible to give a complete
answer to question (ii); it should have a bearing on the phases of the WKB eigenfunctions
which are used in the general derivation of relation (1). In the derivation of these results no
attempt was made to quantify the various approximations by means of rigorous error bounds.
The approximations finally obtained were instead tested in several examples, partly by an-
alytical methods, partly by numerical ones. It is intended to present this material together
with examples which illustrate the methods described in paper I in a future publication.

Finally, in section 3 we speculate on possible extensions of the class of semiclassical
operators found in section 2. The appendix on anharmonic oscillators is added to show
that two inequalities used in the derivation of section 2 are satisfied for these systems if the
energies of the coherent states are sufficiently high.

Throughout this paper the notation and terminology of paper I is used.
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2. Semiclassical operators

For many operatorŝF the problem in checking relation (1) is not the calculation of the
W -representativeF(P,X) but the following. First, this function has to be expressed in
terms of action and angle variables whose definition depends on the Hamiltonian of the
system and which are therefore not explicitly known in general. Second, one has to calculate
the matrix elements〈n′|F̂ |n′′〉 which requires knowledge of the eigenvectors|n〉, at least in
approximate form. In the following we show how to overcome these problems for operators
of the form

F̂I0,Θ0;δI,δΘ =
∣∣∣∣I0+ δI2 ,Θ0+ δΘ

2

〉 〈
I0− δI

2
,Θ0− δΘ

2

∣∣∣∣ (3)

when |δI| � I0 and |δΘ| � 2π , and the energyH(I0) is sufficiently high. In the following
derivation of approximations for the quantities of interest (W -functions, scalar products of
wavefunctions, matrix elements, expectation values) it will be assumed that in this energy
range the Hamiltonian satisfies the conditions formulated in equations (10) and (19); the
validity of these inequalities for anharmonic oscillators is discussed in the appendix.

Let P0± δP/2 andX0± δX/2 be related toI0± δI/2 andΘ0± δΘ/2 by the canonical
transformationI,Θ→ P,X [4]. Then

FP0,X0;δP,δX(P,X)=2 exp

{
− (P − P0)

2+ (X −X0)
2

h̄
−i
(2P − P0)δX − (2X −X0)δP

2h̄

}
.

(4)

AssumingδI, δΘ to be sufficiently small we can linearize the canonical transformation in a
neighbourhood of(P0, X0) ≡ (I0,Θ0)(

P − P0

X −X0

)
= α0

(
I− I0

Θ−Θ0

)
(5)(

I− I0
Θ−Θ0

)
= α−1

0

(
P − P0

X −X0

)
(6)

where

α =


∂P
∂I

∂P
∂Θ

∂X
∂I

∂X
∂Θ

 = ( a b

c d

)
(7)

α−1 =


∂I

∂P

∂I

∂X
∂2

∂P

∂2

∂X

 = ( d −b
−c a

)
(8)

detα = detα−1 = 1 (9)

and the subscript 0 means that the partial derivatives have to be taken at(P0, X0) ≡ (I0,Θ0).
The isolinesI (P,X) = constant and2(P,X) = constant passing(P0, X0) are almost
orthogonal if (

u0− v0

2w0

)2

� 1 (10)

whereu, v,w are the elements of the symmetric matrix

β = αTα =
(
u w

w v

)
. (11)



2230 P Kasperkovitz and M Peev

For anharmonic oscillators it can be shown that (10) can be satisfied for every angleΘ0 by
choosing a sufficiently high value ofI0. We therefore assume that this relation also holds
true for the system under consideration and the energy range of interest. Note that (10)
allows one to approximateβ0 by a diagonal matrix with elementsu0 andv0 = u−1

0 ,

u = a2+ c2 =
(
∂P
∂I

)2

+
(
∂X
∂I

)2

. (12)

We now split the phase in (4) into two parts, namely−(1/h̄)[(P − P0)δX − (X −X0)δP ]
and+(1/2h̄)(P0δX −X0δP ). Using (5) we obtain for the first term

(P − P0)δX − (X −X0)δP ≈ (I− I0)δΘ− (Θ−Θ0)δI (13)

(this is the invariance of the symplectic form under canonical transformations). The term
(1/2)(P0δX) appearing in the second part of the phase is the area of a triangle with
corners(0, 0) and (P0, X0 ± δX/2). Without change of this area the latter two points
may be shifted parallel to the (locally straight) isoline2(P,X) = Θ0 until they meet the
(approximately orthogonal) isolineI (P,X) = I0, and the coordinates of the new points
(I,Θ) = (I0,Θ0± δΘ′) may be calculated by means of (6). The same can be done for the
second term, and when the two areas are subtracted one obtains

(1/2)(P0δX −X0δP ) ≈ I0δΘ. (14)

Since the isolines of2(P,X) andI (P,X) were assumed to be approximately orthogonal,
we also have in the neighbourhood of(P0, X0) ≡ (I0,Θ0)

(P − P0)
2+ (X −X0)

2 ≈ u0(I− I0)2+ u−1
0 (Θ−Θ0)

2. (15)

When these expressions are inserted into (4) one obtains the Weyl representative as a function
of the variablesI,Θ and the parametersI0,Θ0. The result is, however, not periodic in
the two angles, since equations (13)–(15) were derived from a local approximation of the
canonical transformationP,X→ I,Θ. To restore the periodicity we require that

δI/h̄ = integer (16)

and modify the Gaussian inΘ−Θ0 according to

exp

{
− (Θ−Θ0)

2

h̄u0

}
→ exp

{
− 4

h̄u0
sin2

(
Θ−Θ0

2

)}
. (17)

For the Fourier decomposition of this periodic function we use the formula [5]

exp

{
−2x sin2 φ

2

}
≈ 1√

2πx

∑
M

e−M
2/2x+iMφ (18)

which is a good approximation for

x = 2/h̄u0� 1. (19)

Putting things together we therefore arrive at

(FI0,Θ0;δI,δΘ)δn(n̄+h̄)

≈
(
h̄u0

π

)1/2

exp

{
− u0

h̄
(I0− n̄+h̄)2− h̄u0

4

(
δn− δI

h̄

)2

−i(n̄+δΘ+δnΘ0)

}
.

(20)
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We now turn to the matrix elements of the operator (3). For the eigenfunctionsψn(x)

we use the simplest WKB approximations [6]. Like the true eigenfunctions these functions
can be chosen to be real and to have definite parity,

ψIn (x) =
[

2

π

∂2S(In, x)
∂I∂x

]1/2

cos

[
S(In, x)
h̄
− nπ

2

]
for |x| < xIn (21)

= 0 for |x| > xIn . (22)

In (21) S(I, x) is the generating function of the canonical transformationP,X→ I,Θ,

S(I, x) =
∫ x

0
dx ′ p+(I, x ′) = −S(I,−x) (23)

p+(I, x) =
√

2H(I)− 2V (x) > 0 (24)

pI = p+(I, 0). (25)

In (24) H(I) is the inverse function of

I(H) = 1

2π

∫
H(p,x)<H

dp dx (26)

and in (23) and (24) it is assumed thatx ∈ (−xI, xI) where±xI are the turning points

xI = x+(I, 0) (27)

x+(I, p) = non-negative solution ofV (x) = H(I)− 1
2p

2. (28)

The partial derivatives of (23) are

∂S(I, x)
∂x

= p+(I, x) = p+(I,−x) (29)

∂S(I, x)
∂I

= θ(I, x) = −θ(I,−x) (30)

whereθ(I, x) is an angle measured with respect to the positivep-axis (not to be confused
with the angle2(p, x) which is defined in (32) later). Because of (29) and (30)

∂2S(I, x)
∂I∂x

= ∂θ(I, x)
∂x

= ∂p+(I, x)
∂I

= ω(I)
p+(I, x)

> 0 for |x| 6 xI. (31)

Given the functionsH(P,X), I(H), and θ(I, x) the action variable is then defined by
I (P,X) = I(H(P,X)), while the conjugate angle variable2(P,X) is defined by the
equation

(signP)2(P,X) = θ(I(H(P,X)),X)− π/2. (32)

Note thatθ(I, x) varies between−π/2 andπ/2 whereas2(P,X) varies between−π and
π , assuming the value 0 on the positiveX-axis.

The integern = 0, 1, 2, . . . in (21) fixes the parity of the function; it also counts the
number of nodes of the true eigenfunction and labels the eigenvalues in increasing order.
The dependence ofIn, the value of the actionI used in (21), on the numbern is usually
fixed by the Maslov (Einstein, Brillouin, Keller, . . .) quantization condition

In = (n+ 1
2)h̄ = n+h̄ (33)

which also follows from Langer’s modification of the simple WKB approximation (21)
near the turning pointsx = ±xI [6]. This result is also obtained in the following, provided
that the potential does not confine the particle’s motion to a finite interval, which does not
depend on the considered energy (infinitely deep square well, Pöschl–Teller potential). The
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function (21) diverges at the classical turning points±xI. This is unphysical and one should
keep in mind that the true eigenfunction is well approximated by equations (21) and (22)
only in the case wherex is sufficiently far away from the turning points.

The next step is to calculate the scalar product〈n|P,X〉 where|n〉 is given by (21)–(28)
and|P,X〉 by equation (12) of paper I. It is sufficient to consider only the caseP > 0, X > 0
because

〈n|P,X〉 = 〈n| − P,X〉∗ = (−1)n〈n|P,−X〉∗ = (−1)n〈n| − P,−X〉. (34)

The integration overx is performed only in an approximate way, essentially by the method
of steepest descent. Since〈x|P,X〉 has a sharp peak atx = X we substitute in (21)

S(In, x)→ S(In,X)+ (x −X)p+(In,X)
∂2S

∂I∂x
(In, x)→ ∂p+

∂I
(In,X). (35)

If the remaining integral is evaluated by means of∫ ∞
−∞

dx exp{−ax2+ ibx} =
(
π

a

)1/2

exp

{
− b2

4a

}
(36)

one arrives at

〈n|P,X〉 ≈
(
h̄

π

)1/4 [
∂p+
∂I
(In,X)

]1/2

eiPX/2h̄

× exp

{
− [P − p+(In,X)]2

2h̄
− i

[
S(In,X)
h̄

− nπ
2

]}
. (37)

In equation (37) the second term has been omitted because it is proportional to
exp{−(1/2h̄)[P + p+(In,X)]2} � 1. It should be noted that the right-hand side of (37)
approximates the scalar product only for|X| < xIn −

√
2h̄; for |X| > xIn +

√
2h̄ one obtains

〈n|P,X〉 ≈ 0 because the overlap of the two functions becomes negligibly small in this
case. Moreover, it is only for coherent states lying near theP -axis (X ≈ 0) that (37) can be
expected to be a reliable approximation since the quality of the WKB approximation (21)
decreases as one moves away fromx = 0.

Considered as a function of the coherent state parametersP,X the modulus of the
right-hand side of (37) reaches its maximum value whenP = p+(In,X) or I (P,X) = In.
If we keep this value ofI (P,X) fixed and vary the centre of the coherent state withΘ,
i.e. P = P(In,Θ) andX = X(In,Θ), then the phase of (37) varies according to

1

2h̄
p+(In,X(In,Θ))X(In,Θ)− 1

h̄
S(In,X(In,Θ))+ nπ

2
= −1

h̄
In
(
Θ+ π

2

)
+ nπ

2
. (38)

That the both sides of (38) are equal follows from definitions (23) and (24) and dP dX =
dI dΘ. ForΘ = −π/2 (positiveP -axis) (38) assumes the valuenπ/2, which is in agreement
with 〈n|P, 0〉 = (−1)n〈n|P, 0〉∗ (cf equation (34)). ForΘ → 0 (positiveX-axis) the
phase (38) would approach the value zero, ifIn were equal tonh̄. While this would be
acceptable for (34), which requires〈n|0, X〉 = 〈n|0, X〉∗, it would contradict the quantization
condition (33). This discrepancy has two reasons. First, the WKB function (21) is only a
poor approximation of the true eigenfunction whenx approaches the turning point (X→ xIn ,
Θ→ 0). Second, when the coherent state is centred in this region, it is no longer meaningful
to neglect second-order terms in the expansion (35) and to extend the range of integration
to the full real line as it was done in (36). To improve the approximation one has to include
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the second-order term and to choosex = xIn as upper bound in the integration overx. For
anharmonic oscillators

∂2S

∂X2
(I, X) < 0 for 0< X < xI (39)

while this quantity vanishes identically for the infinitely deep square well. If we restrict the
discussion to Hamiltonians for which (39) holds true, we are left with expressions of the
form (a, b, c > 0)

lim
c→0

∫ c

−∞
dx exp{−ax2+ ibx2} =

√
π

2(a2+ b2)1/4
ei8 8 = 1

2
arctan

(
b

a

)
. (40)

WhenX approaches the turning point,b tends to+∞ and the phase8 tends to+π/4.
From this we conclude that

phase of〈n|In,Θ〉 ≈ −1

h̄
In
(
Θ+ π

2

)
+ nπ

2
+8(Θ) (41)

where8(Θ) is a function which varies slowly from8(−π/2) = 0 to8(0) = +π/4.
To gain further insight into the phase of the scalar product〈n|In,Θ〉, whenΘ is close to

0 (centre of the coherent state near the positiveX-axis), we also consider the approximation
which is obtained from the momentum representation of the two functions. The formulae
corresponding to (21)–(23) and (29)–(32) are of the following form (cf [7])

ψ̃In (p) = i−n
[
− 2

π

∂2S̃(In, p)
∂I∂p

]1/2

cos

[
S̃(In, p)
h̄

− nπ
2

]
for |p| < pI (42)

= 0 for |p| > pI (43)

S̃(I, p) = −
∫ p

0
dp′ x+(I, p′) = −S̃(I,−p) (44)

−∂S̃(I, p)
∂p

= x+(I, p) = x+(I,−p) (45)

∂S̃(I, p)
∂I

= θ̃ (I, p) = −θ̃ (I,−p) (46)

−∂
2S̃(I, p)
∂I∂p

= −∂θ̃(I, p)
∂p

= ∂x+(I, p)
∂I

> 0 for |p| 6 pI (47)

2(P,X) = θ̃ (I(H(P,X)), (signX)P )− (signP)[1− (signX)]
π

2
. (48)

The analogue of (37) is

〈n|P,X〉 ≈
(
h̄

π

)1/4 [
∂x+
∂I
(In, P )

]1/2

e−iPX/2h̄+inπ/2

× exp

{
− [X−x+(In, P )]2

2h̄
+ i

[
S̃(In, P )
h̄
− nπ

2

]}
(49)

and the validity of this approximation is similarly limited as that of (37). If we repeat the
arguments leading from (37) to (41) we find

phase of〈n|In,Θ〉 ≈ −1

h̄
InΘ+ 8̃(Θ) (50)

where8̃(Θ) is a function which increases slowly from̃8(−π/2) = −π/4 to 8(0) = 0.
Comparison of (50) and (41) shows that(−In/h̄+ n)(π/2)+8− 8̃ should vanish for all
values ofΘ ∈ (−π/2, 0); this is only possible if the difference8 − 8̃ is a constant. The
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value of this constant follows from the value of the two functions at the boundaries of the
interval (−π/2, 0). At both ends one finds8 − 8̃ = π/4, which entails the quantization
condition (33). This condition was first obtained from a study of the WKB function (21)
and (22) near the turning points; in the present approach, which follows Maslov’s ideas [7],
the behaviour of the particle near the turning points is taken into account by the inclusion
of the WKB function inp-representation, equations (42) and (43), which yields a good
approximation for this situation. When the quantization condition (33) is inserted into (41)
and (50) and the monotonicity of the functions8 and 8̃ in Θ ∈ (−π/2, 0) is taken into
account, one obtains

8̃(Θ) = 8(Θ)− π/4= 1
2Θ (51)

and−nΘ for both phases. We assume that the phase of the scalar products〈n|I,Θ〉 can be
well approximated by this expression ifI is close toIn.

To obtain an approximation of the modulus of〈n|I,Θ〉 we take into account that
approximation (21) is good forx ≈ 0 and approximation (42) good forp ≈ 0. Noting
that

P − p+(In,X = 0) = P(I,Θ = −π/2)− P(In,Θ = −π/2)
X(I,Θ = −π/2) = X(In,Θ = −π/2) = 0 (52)

X − x+(In, P = 0) = X(I,Θ = 0)− X(In,Θ = 0)

P(I,Θ = 0) = P(In,Θ = 0) = 0 (53)

we expect that for the general position of the coherent state the quadratic term in the
exponent of the scalar product is given by

[P(I,Θ)− P(In,Θ)]2+ [X(I,Θ)− X(In,Θ)]2 ≈ u(I− In)2 (54)

and that the modulus may be approximated by a Gaussian. The final result for the
approximation of the scalar product is then

〈n|I,Θ〉 ≈
(
h̄ū(n+h̄)

π

)1/4

exp

{
− ū(n+h̄)

2h̄
(I− n+h̄)2− inΘ

}
(55)

whereū(I) is defined by

ū(I) = 1

2π

∫
dΘ u(I,Θ). (56)

The constant on the right-hand side of (55) follows from the normalization condition

1

h

∫
dI dΘ 〈n′|I,Θ〉〈I,Θ|n′′〉 ≈ δn′,n′′ . (57)

The following facts may serve as a test of approximation (55).
(i) The scalar products (55) are the expansion coefficients of a coherent state|I,Θ〉 of

high energy, when it is expanded in the eigenvectors|n〉 of the Hamiltonian. As is clear
from its derivation, (55) should hold for a wide class of binding potentials; these asymptotic
expansion coefficients can be compared to the exact ones when the latter are known. For
instance, for the harmonic oscillator the exact coefficients are given by equation (74) of
paper I; if the Poisson distribution inI is approximated by a normal distribution one
recovers (55) withū(n̄+h̄) ≈ (2n+h̄)−1. That superpositions of energy eigenstates yield
wavepackets similar to coherent states if the moduli of the expansion coefficients are chosen
as Gaussians in the quantum numbern has been noticed before by other authors [8, 9] but
not justified by general considerations. The derivation of equation (55) fills this gap and
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shows that only those eigenvectors have to be considered in the expansion for which, say,
|n − (I/h̄)| < 3/

√
h̄u. This allows one to estimate the relevant energy range when the

(initial) state is a superposition or a mixture of coherent states.
(ii) In accordance with (34)

〈n|I,Θ〉 = 〈n|I,−Θ〉∗ = (−1)n〈n|I, π−Θ〉∗ = (−1)n〈n|I,Θ+π〉. (58)

(iii) We may also use (55) to obtain an approximation of the scalar product of two
coherent states (equation (13) of paper I). If|Θ′ −Θ′′| � 2π , (I′/h̄) ≈ (I′′/h̄) � 1, and
inequality (19) holds true for these values of the action, the discrete variablen > 0 may be
treated like a continuous variable ranging from−∞ to +∞. If in (55) ū(n+h̄) is replaced
by ū(I) the integration overn may be performed in closed form, the result being

〈I′,Θ′|I′′,Θ′′〉 ≈ exp

{
− ū

4h̄
(I′ − I′′)2− 1

ũh̄
sin2

(
Θ′ −Θ′′

2

)
− i

2h̄
(I′ + I′′)(Θ′ −Θ′′)

}
(59)

whereũ = 1
2[ū(I′)+ ū(I′′)]. If this approximation is used in the exact equations

2|〈I′,Θ′|I′′,Θ′′〉|4 = hK(I′,Θ′|I′′,Θ′′) = FI′,Θ′;0,0(I′′,Θ′′) (60)

(cf (4) and equations (13) and (23) of paper I) one obtains approximations of the last two
functions which are consistent with equations (18) and (20).

The last step in the calculation of the matrix elements of operator (3) is to multiply
〈n′|I0+ δI/2,Θ0+ δΘ/2〉 by 〈I0− δI/2,Θ0− δΘ/2|n′′〉 and to rearrange the terms in the
exponentials. Doing so we replaceū(n̄+ ± δn/2) with ū(n̄+) and make use of the identity
(z− x)2+ (z− y)2 = (1/2)[(2z− x − y)2+ (x − y)2]. This gives finally

〈n′|F̂I0,Θ0;δI,δΘ|n′′〉 ≈ (FI0,Θ0;δI,δΘ)δn(n̄+h̄) (61)

which proves that (3) is a semiclassical operator in the sense of equation (1), provided that
u is slowly varying in the action variable whenI ≈ I0 and that inequality (19) is satisfied
there.

The physical meaning of this result is that for systems like (an)harmonic oscillators the
density operators related to coherent states of high energy, as well as mixtures and certain
superpositions thereof, are all semiclassical operators so that equation (1) may be used to
obtain their matrix elements in energy representation. No matter whether theirW -functions
admit an interpretation as classical distribution functions or not, the corresponding (almost
identical) S-functions may be used to calculate time-dependent expectation values as
described in paper I. The operators used as density operators at initial timet = 0 may
also serve as observables in which case the expectation value coincides with the square
modulus of the autocorrelation function. Combined with the scheme of paper I relation (61)
therefore shows that the quantum mechanical autocorrelation function may be calculated
for long time intervals by means of classical mechanics. Results of such a calculation are
presented in [10].

We close this section with two remarks. First, equation (55) shows that forn̄� 1 and
|δn| � n̄ theQ- representatives of the basic operators|n′〉〈n′′| have the form

Qn′,n′′(I,Θ) = 〈I,Θ|n′〉〈n′′|I,Θ〉 =
∫

dI′ dΘ′K(I,Θ|I′,Θ′)Wn′,n′′(I′,Θ′) (62)

≈
√
h̄ū(n̄+h̄)

π
exp

{
− ū(n̄+h̄)

h̄
(I− n̄+h̄)2− ū(n̄+h̄)h̄

4
(δn)2+ iδnΘ

}
(63)

]≈
∫

dI′ dΘ′K(I,Θ|I′,Θ′)Sn′,n′′(I′,Θ′) (64)
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(cf equations (21)–(23) and (43), (49) of paper I). The effect of smoothing with the
kernel (60) is twofold. (i) The region inI, where the function is essentially different
from zero, is widened because of the Gaussian inI. (ii) As is evident from (18) the
number of oscillations inΘ remains unchanged but the amplitudes are more reduced the
higher the number of oscillations. Since the number of oscillations is preserved by a
kernel of the form (60) we may conclude that not only the angular dependence ofSn′,n′′ is
given by exp{i(n′ − n′′)Θ}, but also that ofQn′,n′′ andWn′,n′′ if the two quantum numbers
are sufficiently large and their difference comparatively small. This observation is also
confirmed by numerical calculation of the three functions for anharmonic oscillators. Since
smoothing does not change the minima and maxima of the real and imaginary parts of the
functionsSn′,n′′ it also does not change qualitatively theΘ-dependence of superpositions
of these functions, except that extrema are less pronounced after the smoothing. All the
arguments used in paper I to explain revivals in terms of the relative motion of profiles can
therefore equally well be used for the corresponding constituents of the Husimi function
[11].

The second remark refers to the conventions implied by equation (1). In deriving the
validity of (1) for the operators (3) we started from the WKB functions (21), (22) and (42),
(43). It is therefore clear that a proper phase convention for the eigenfunctions ofĤ reads

ψn(x)→ cn cos(nπ/2)+ dn sin(nπ/2)x for x → 0 (65)

where cn and dn are positive constants. The corresponding condition in momentum
representation is

ψ̃n(p)→ i−n[c̃n cos(nπ/2)− d̃n sin(nπ/2)p] for p→ 0 (66)

with c̃n, d̃n > 0. Conventions (65) and (66), which might be modified by a common
phase factor independent ofn without changing the left-hand side of (1), are nothing but
the standard phase conventions for the harmonic oscillator eigenfunctions [6]; for WKB
functions they were stated in [12].

However, these are not all conventions needed to ensure the validity of (61), a special
case of equation (1). We would not have obtained this result, if we had used another
definition of the function2(P,X). The definition used here makes use of the convention

lim
P→0

2(P,X) = 0 for X > 0. (67)

Should we choose another ray, obtained from the positiveX-axis through a rotation by
some constant angleΘ′, as curve2(P,X) = 0 it would change all Fourier components
FM(I) by a phase factor exp(iMΘ′); as a consequence (61) would no longer hold true.
This sensitivity to the definition of the angle variable was noticed by Morehead in [1]. He
claimed that for equation (1) to hold true, the lower limit of the integral, which defines the
functionS(I, x) appearing in the WKB functions (21), should be the same for all values of
I. This is the case in (23), and the definition of2(P,X) in terms of the functionS(I, x)
is completely specified through equations (26), (30) and (32). But while these equations
(which are missing in [1]) establish a relation between the functions2(P,X) andS(I, x),
they do in no way fix the phase of the argument of the cosine function in (21). In other
words, the shift−nπ/2, which varies from one eigenfunction to the other, is a convention
that has to be added to the conventions made in the definitions of the action integral and
the angle variable. Similar arguments hold for the eigenfunctions inp-representation.
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3. Conclusion and outlook

Finite linear combinations of operators of the form (3) contain many operators of physical
interest such as density operators of coherent states and mixtures thereof. They also contain
superpositions of several coherent states, provided that inequalities (10) and (19) are satisfied
for all auxiliary coherent states, which are centred at interior points of the simplex spanned
by the centres of the components of the superposition, i.e. if these infinitely many auxiliary
coherent states all lie in the high energy region. This excludes the cat state considered in
section 4 of paper I, but it shows that the density operators of cat states formed of two
nearby coherent states are semiclassical. For all these operators the Weyl representative
(Wigner function) is a good substitute for theS-representative and this may be used to
study the time evolution of the state as described in paper I.

However, the class of operators of the form (3) is in any case too restricted to contain
all observables of physical interest. A semiclassical theory should at least contain also
basic operators like position, momentum, kinetic energy, etc. An extension of the class of
semiclassical operators that suggests itself is to make use of the diagonal representation

Â = 1

h

∫
dI dΘ AP (I,Θ)F̂I,Θ (68)

F̂I,Θ = F̂I,Θ;0,0 = |I,Θ〉〈I,Θ|. (69)

Because of (61) each of the projection operators (69) which appear in the integral (68) is a
semiclassical operator if the value of the parameterI is high enough. For these operators the
L2-norm of the difference between theW - and theS-representatives is small. Moreover,
it is to be expected that in the region of the phase space, where the functionFSI,Θ derived
from the matrix elements and the Weyl representativeFI,Θ are essentially different from
zero, their values do not differ much. This conclusion follows from a comparison of their
Fourier decomposition with respect to the variableΘ: The functions(FI,Θ)M(I′) are smooth
functions which, because of (19), vary slowly whenI′ varies over distances of order ¯h (see
(20) with δI = δΘ = 0); for this reason it should be possible to approximate them well
by the step functions(FSI,Θ)M(I

′). If these assumptions are correct one only has to impose
conditions on the functionAP which ensure that the similarity of theS- and theW -functions
of the projection operators (69) carries over to the corresponding representatives ofÂ. To
this end we first requireAP to have a compact support which lies in a region of high energies
(usually determined by the state under consideration). This assumption already eliminates
the operators presented in section 4 of paper I for which the semiclassical formula for the
matrix elements, equation (1), was seen to fail. However, if this were the only postulate,
AP could still be a tempered distribution consisting, for example, of derivatives of delta
functions. As the derivatives of theW - and theS-representatives of the coherent states
can be very different (one being smooth, the other a step function), we require as a second
condition thatAP is also a smooth function. This should ensure that the operator (68) is
semiclassical. The class of observables of the form (68) is especially interesting when, as it
is often the case, theP -representatives of the interesting operators are known as functions
of P andX. All that is needed is then a change of variables and a cut-off in energy which
has to be performed in such a way that it has practically no impact on the value of the
expectation value.

These arguments should be at least plausible but it is obvious that a deeper mathematical
analysis of these questions is still lacking. We hope that the results of this paper will
initiate a more rigorous study of semiclassical operators and the Heisenberg correspondence
principle. Since the magnitude of ¯h cannot be varied in nature, we have to make a selection
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of comparable objects in both theories, i.e. a proper reduction of the phase space functions
and operators under consideration, if we want to understand the relation between classical
and quantum mechanics.

Appendix. Anharmonic oscillators

Consider the potentialV (x) = k|x|ν , k > 0, 0< ν < ∞. By a canonical transformation
p = ηP, x = η−1X the Hamiltonian can be brought to the standard form

H(P,X) = c(P 2+ |X|ν) c > 0. (A1)

The actionI(H) is 2/π times the area inP > 0, X > 0 enclosed by the curveH(P,X) = H
(cf (26)). Hence [4]

I(H) = cνH(ν+2)/2ν (A2)

with

cν = 2

πν
c−(ν+2)/2ν

∫ 1

0
dξ ξ (1/ν)−1

√
1− ξ . (A3)

The functional dependence ofP andX on the action and angle variablesI,Θ is given by

P(I,Θ) = (cν/c)1/2Iν/(ν+2)c(Θ) X(I,Θ) = (cν/c)1/ν I2/(ν+2)s(Θ) (A4)

wherec ands are generalizations of the cosine and sine functions, respectively.

c(Θ) = c(Θ+ 2π) = c(−Θ) s(Θ) = s(Θ+ 2π) = −s(−Θ) (A5)

c(0) = s(π/2) = 1. (A6)

Since d/dt = ω(I)∂/∂Θ and

ω(I) = dH
dI
= 2ν

ν + 2
c(ν+2)/2ν
ν I(ν−2)/(ν+2) (A7)

Hamilton’s equations of motion become a pair of coupled differential equations for the
functionsc ands.

c ′(Θ) = −ν ν + 2

2ν

(
c

cν

)(ν+2)/2ν

s(Θ)ν−1

s′(Θ) = 2
ν + 2

2ν

(
c

cν

)(ν+2)/2ν

c(Θ). (A8)

Elimination ofc yields a differential equation fors (Newton’s equation), which is nonlinear
if ν 6= 2. It also follows from (A6) and (A8) that

c(Θ)2+ s(Θ)ν = 1. (A9)

From (A8) the functional determinantα, equation (7), and the related matrixβ,
equation (11), can be calculated. The asymptotics forI→∞ are

u = O(I−x/(ν+2)) v = O(Iy/(ν+2)) w = O(Iz/(ν+2))

ν > 2 : x = 4, y = 2ν, z = ν − 2

ν 6 2 : x = 2ν, y = 4, z = 2− ν (A10)

which shows that the inequalities (10) and (19) are satisfied at sufficiently high energies.
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